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In most studies of choice under concurrent schedules of reinforcement, two physically identical
operanda are provided. In the ‘‘real world,’’ however, more than two choice alternatives are often
available and biases are common. This paper describes a method for studying choices among an
indefinite number of alternatives when large biases are present. Twenty rats were rewarded for choosing
among five operanda with reinforcers scheduled probabilistically and concurrently. Large biases were
generated by differences among the operanda: two were levers and three were pigeon keys. The results
showed that when reinforcer frequencies were systematically varied, an extension of Baum’s (1974)
Generalized Matching Model, referred to as the Barycentric Matching Model, provided an excellent
description of the data, including individual bias values for each of the operanda and a single exponent
indicating sensitivity to reinforcer ratios.
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_______________________________________________________________________________

The study of choices under concurrent
schedules of reinforcement has been dominat-
ed by attempts to formulate models of be-
havior that describe and predict responding,
whether at the general ‘‘molar’’ lever or at a
response-by-response ‘‘local’’ level. The mea-
sure of a model is the extent to which it
accounts for variance in existing data and how
well it anticipates future behavior under novel
schedules unfamiliar to the subject. One of the
best-established models is Baum’s Generalized
Matching Law (1974):
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The Generalized Matching Law describes, at a
molar level, the relationship between ratios of
two responses, BX and BY, and two reinforcer
frequencies, RX and RY, across operanda X and
Y. This description of the relationship between
responses and reinforcers is accomplished with
two parameters: sensitivity (s) and bias (k).

Sensitivity indicates how response ratios
change with the reinforcer ratios. When re-
sponse ratios exactly match reinforcer ratios,
s 5 1.0. When response ratios show a smaller

shift in ratio than do the reinforcer ratios, s ,
1.0. For example, if reinforcers are awarded
with a 9 : 1 ratio in favor of X, but the subject
responds at a 3 : 1 ratio in favor of X, then s 5
0.5 (because 90.5 5 3) and we would say the
subject ‘‘undermatched.’’ If s . 1.0, then
response ratios change in a more extreme
fashion than the reinforcer ratios and the
organism is said to ‘‘overmatch.’’ For example,
if a 9 : 1 reward ratio elicits a 27 : 1 response
ratio, then s 5 1.5 (because 91.5 5 27).

The k parameter describes biases toward X (if
k . 1.0) or away from X (if k , 1.0) relative to Y.
Such biases appear to be independent of the
reinforcer frequencies, and as such can be
considered inherent preferences. Thus, if k 5
2.0, we can interpret that as indicating that the
subject preferred the X alternative twice as
much as Y, and this preference did not depend
upon the relative frequencies of reinforcement.

Most studies of responding under concurrent
schedules have focused on two-choice situa-
tions, which is to say, those in which responses
to two operanda were reinforced. A handful of
exceptions exist in which more than two physi-
cally separate options were provided (e.g.
Aparicio & Cabrera, 2001; Elsmore & McBride,
1994), and a few other studies simulated choices
among more than two operanda by concatenat-
ing responses into sequences (e.g. Schneider &
Davison, 2005), but the central focus has been
on two-alternative scenarios.

It is also the case that efforts have been
made in most experiments to ‘‘equalize’’ the
operanda—to remove bias—such that values
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for the k parameter generally approximate 1.0.
Attempts to minimize extraneous operandum
variables date back to early concurrent sched-
ule research (Findley, 1958) and operanda
equalization remains a concern in modern
experimental designs. While a few studies have
compared topographically distinct operanda
where biases might be expected (e.g. Davison
& Ferguson, 1978; Sumpter, Temple, & Foster,
1998), most have used pairs of topographically
identical operanda.

The focus both on two operanda and on
equalized operanda stems from the reasonable
goals of isolating experimental variables and
mitigating confounding variables or interac-
tions. Nevertheless, these conventions call into
question the external validity of many conclu-
sions in this field. After all, real-world schedules
of reinforcement rarely provide only two possi-
bilities, and those options are almost never
identical in type, topography, or inherent value.
Extending the experimental paradigm to a
multitude of choice options where biases would
be expected may supplement earlier studies in
an important way by testing the generality of
their conclusions and implications.

We therefore describe responding by rats
when each of five operanda provided reinforcers
according to concurrently operating schedules.
Some of these operanda differed from others in
terms of required response topographies and
distances from the food magazine, and these
were expected to differentially bias choices.

A difficulty arises, however, when applying
traditional matching analyses to more than two
simultaneously available operanda. The Gen-
eralized Matching Law, as given by Equation 1,
does not by itself provide the means to fully
describe behavior on five simultaneous oper-
anda. The main problem is that, as will be
seen, the value of the bias parameter k is
generally considered to compare only two
operanda, without a clear way of including
additional alternatives. If we consider the
implications of the equation, however, a way
to model behavior on any number of operanda
emerges. To reach this model, we must first
explore the bias parameter, k.

Elaborating On Bias

Baum’s parameter k has been understood to
represent a relative value that compares two
operanda. In the example given above, when k
5 2.0, this implies a two-to-one preference of

operandum X compared to operandum Y.
Thus, k is implicitly a ratio between two values.
In making this point, Baum (1974) explicitly
presents matching in the following terms:
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Here, the k parameter in Equation 1 is
expanded into a fraction composed of two
separate measures of bias, kX and kY, one for
each operandum, with only the result of the
division estimated in practice as the k param-
eter in Equation 1. Thus, the absolute values of
kX and kY are undefined. As will be shown
below, however, conceptualizing the ratio
explicitly in terms of two values is important
when more than two operanda are involved.

If a third operandum Z is made available, the
expanded form of the Generalized Matching
Law would continue to allow the original (kX/
kY) bias to be computed, again as a single value,
while a separate analysis could be performed to
compare operandum Y to operandum Z,
resulting in the parameter (kY/kZ). One basic
implication of the Generalized Matching Law is
that because bias is a relative attribute (bias of
one thing versus another) and because these two
k fractions share a common parameter (both
include kY), then the three bias values, one per
operandum, should be interrelated. Put a
different way, if the Generalized Matching Law
can be applied over an indefinite number of
choice alternatives, then all of the bias param-
eters obtained through pairwise matching
comparisons would be relative to one another
in a consistent manner. Such consistency would
be shown if (kX/kZ), as estimated empirically
using Equation 2, approximately equaled the
cross-multiplication of (kX/kY) N (kY/kZ). This
property, which we refer to as the transitivity of
bias ratios, is important because it means that
estimates of bias, directly calculated from the
data, should provide information about other
bias ratios, e.g., if we observe (kX/kY) and (kY/
kZ), we will be able therefore to estimate (kX/kZ).

Furthermore, if the individual ratios are
transitive, then bias can be described as a
single multidimensional ratio that indicates
the relative biases of all operanda, taken
together. This can be seen by considering the
following: The ratio (kX : kY) is the equivalent
of the fraction (kX/kY), and although the
concepts of ratio and fraction are commonly
thought to be equivalent, a fraction is only one
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kind of ratio. Formally, ratio describes any
number of interrelated values. Thus, the
fractions (kX/kY), (kY/kZ), and (kX/kZ) can be
related in a three-way ratio (kX : kY : kZ). The
Generalized Matching Law (as embodied by
Equation 2) leaves unstated how to relate
three or more values. A multidimensional ratio
provides the possible solution.

A multidimensional ratio is by definition a
barycentric set of values. Barycentric values
represent the coordinates of a point in space,
determined through the use of a coordinate
system in which the values must add up to an
arbitrary constant (Bogomolny, 2008). Thus,
within a barycentric system, any change to an
individual value necessarily changes the other
values so that all ratios remain fixed. The
important consequence for our problem is
that barycentric coordinate systems can repre-
sent relationships among any number of
values. A simple example of a barycentric
system is x + y + z 5 T (where T represents the
scale, and can be any positive number). In the
barycentric case, the scale of the equation is
arbitrary (we could easily set T to 10, or 0.1, or
any other positive number) because changing
the scale has no effect on the interrelations
among x, y, and z. In other words, whether x + y
+ z 5 3 or 10 N(x + y + z) 5 30, the relationship
between x and y (that is, the ratio x : y) remains
unchanged. An added benefit of analyses
using barycentric terms is the identification
of the scale, as defined by the T parameter.

To visualize how barycentric values work,
consider the following example: x + y + z 5 3. A
three-alternative barycentric system can readily
be presented as coordinates within a triangle1,
shown in Figure 1. Instead of perpendicular
axes, as in a traditional coordinate system,
each axis runs from the edge of the triangle to
the opposing vertex. If we set any single
barycentric value equal to zero, the resulting

point must lie on the edge of the triangle. If we
set two of the values equal to zero, the
resulting point lies at the vertex of the triangle.

The barycenter of the triangle is the point at
which all barycentric values are equal to one
another. In Figure 1, that point is located at
(1,1,1). For any other point in the system,
however, the relations between the barycentric
values can be readily understood as simple
ratios. Consider the point (0.75,1.5,0.75). In
this case, we can say that x and z had equal
value, but both x and z were only half as large
as y. Thus, the point (0.75, 1.5, 0.75) corre-
sponds to a (1 : 2 : 1) relationship.

If bias is understood as a multidimensional
ratio with barycentric properties, an arbitrary
number of biases can be described and
related, not merely the two values that a
fraction permits. This way of representing
bias, to be referred to as barycentric bias, has
the properties we are accustomed to seeing in
a bias ratio: a set of non-negative numbers
whose relative values are consistent regardless
of the scale of their absolute values.

One of the central objectives of this paper is
to test the hypothesis that bias has barycentric
properties. To test this hypothesis, we ascertain
whether the pairwise bias estimates generated
by Equation 2 display transitivity. For example,
the closer (kX/kY) is estimated by (kX/kZ)N
(kZ/kY), the more strongly transitivity will be
confirmed. That confirmation, in turn, streng-

1 In practice, barycentric values map to a point within a
simplex. The most basic relevant example is a 1-simplex,
which takes the form of a line segment divided into two
portions by a point. A traditional bias ratio can thus
describe the relative lengths of those portions, and is thus
defined as the position of the point. A 2-simplex is a
triangle, and corresponds to the example presented in
Figure 1. A 3-simplex (or tetrahedron) can be used to
describe a four-alternative set of barycentric values, which
correspond to a point in three-dimensional space.
Generalizing outward, the barycentric values for n alter-
natives represent a point within a (n-1)-simplex that can be
mapped in (n-1) dimensions.

Fig. 1. Sample three-parameter barycentric coordi-
nate system, where x + y + z 5 3. When used to represent
bias, the barycenter (at 1,1,1 in this case) represents the
circumstance where the alternatives are equal to
one another.
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thens the proposal that we can describe bias as
a barycentric system, with one bias parameter
per operandum.

Simplifying Sensitivity

Even if we can represent bias as having a
barycentric character, it is not obvious from
Equation 2 how to approach the sensitivity
parameter s. Using Equation 2 to compare
operanda X and Y with one regression and X
and Z with another regression might produce
two different s parameters. If they differ,
should that difference be viewed merely as
the result of experimental error, or as an
empirically meaningful effect? In trying to
create a complete model of behavior, resolving
this question is important.

The most comprehensive examination of
sensitivity in cases where more than two
operanda are available was made by Schneider
and Davison (2005). They present compelling
evidence that a single common sensitivity value
across all operanda adequately describes
matching behavior. If the multiple sensitivities
derived from traditional matching analyses
such as Equation 2 can be resolved into a
single parameter, then we should in principle
be able to describe matching behavior across
an arbitrary number of operanda with a single
sensitivity value, plus one barycentric bias
value associated with each operandum.

Thus, the second objective of this paper is to
test whether a model with a single sensitivity
parameter is sufficient to describe choices
under concurrent schedules.

The Barycentric Matching Model

The two hypotheses presented above (name-
ly, that bias is barycentric and that a single
sensitivity parameter suffices) lead to a model
of performance that we will refer to as the
Barycentric Matching Model. The basic premise
of the Barycentric Matching Model is seen in
Equation 3:

kx O RXð Þs
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kY O RYð Þs
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ð3Þ

This equation is arithmetically identical to
Equation 2, but puts all values associated with
a particular operandum on one side of the
equation. If we use barycentric bias values
(henceforth denoted as bk, with one bkW per
response alternative W), as well as a single
sensitivity parameter s, we can extend the

equation to any number of operanda as shown
in Equation 4, which defines the Barycentric
Matching Model:

bkAO RAð Þs

BA
~

bkBO RBð Þs

BB
~
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~:::

~
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given that

bkAzbkBzbkCz . . . zbkN ~Tð Þ

Again, RW here refers to reinforcer frequency
on operandum W, BW refers to responses on
operandum W, s refers to sensitivity, and each
bkW refers to the barycentric bias associated
with one operandum W. The T parameter is
new to matching models, and is defined by the
user as the scaling factor for the barycentric
bias. We will use the convention throughout
this paper that T will equal the number of
available response alternatives. In our experi-
ment, for example, we set T 5 5 because we
utilized five operanda. Clearly reporting the
value for T is important because using a
common scale facilitates the comparison of
barycentric bias values across subjects or
experiments. To this end, we will use bkW

parameters when we refer to bias parameters
scaled to a fixed and explicit T, and kW

parameters to refer to bias parameters that
have not been scaled in such a way.

Below, we present an experiment that tested
the two central hypotheses of the Barycentric
Matching Model: the barycentricity of bias
parameters and the sufficiency of a single
sensitivity parameter. The results of our
analyses suggest that the Barycentric Matching
Model can describe matching behavior effec-
tively for an arbitrary number of discrete
operanda, even when those operanda differ
from one another.

METHOD

Subjects

Twenty 35-week-old male Long-Evans rats
had been trained to respond on all operanda
but were otherwise experimentally naı̈ve.

Apparatus

The operant chambers measured 28 cm
wide, 27 cm deep, and 29 cm tall, with a wire
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mesh floor. Figure 2 shows the layout in the
chambers. Five operanda were present in the
chambers: three inset keys (3 cm diameter,
9 cm above the floor) on the left wall and two
levers (5 cm wide, 1.5 cm deep, 1 cm thick,
6 cm above the floor) extending from the
right wall. Reinforcers were delivered to a tray
(3 cm diameter, 2.5 cm above the floor) on
the right wall, located between the levers.
Water was continuously available from a bottle
18 cm above the chamber floor and 3 cm
forward from the back wall. The front wall of
the chamber was a door. The front and back
walls and the ceiling of the chamber were all
composed of clear Plexiglas, while the left and
right walls housing the operanda were made of
aluminum. All mechanical components of the
operant chambers were manufactured by
Gerbrands. The chambers were contained

within sound-dampening enclosures, and a
one-way mirror on the enclosure allowed the
subjects to be viewed through the Plexiglas
door of the chamber. Each chamber was
controlled by an Apple eMac computer run-
ning Macintosh OS 9, applying a contingency
programmed in TrueBasic.

Procedure

Reinforcers were concurrently scheduled on
each of five operanda according to indepen-
dently programmed random ratio schedules
(Jensen & Neuringer, 2008; Lau & Glimcher,
2005). Controlling reinforcement on each of
the five operanda was a random number
generator and a probability-of-reinforcer-setup
parameter. Preceding every response (regard-
less of which operandum was chosen), all five
random number generators were activated (or

Fig. 2. Layout of the operant chambers, with the five operanda (Left, Center, and Right Keys; and Left and Right
Levers), and other important parts of the apparatus.

BARYCENTRIC EXTENSION OF GENERALIZED MATCHING 143



‘‘fired’’) to produce a floating point number
between 0.0 and 1.0, and a reinforcer was
scheduled on any operandum whose random
number was less than the probability-of-rein-
forcer-setup parameter associated with that
operandum. Scheduled (or ‘‘set up’’) rein-
forcers were ‘‘held’’ indefinitely until a re-
sponse was made to that operandum. After a
reinforcer had been scheduled on a given
operandum, the random number generator
for that operandum ceased firing, but contin-
ued to fire on other operanda for which
reinforcers had not yet set up.

Thus, reinforcer setups were driven by re-
sponses (regardless of which operandum was
responded to) and once set up, a reinforcer was
collected with the first response to that oper-
andum. A reinforcer setting up on one oper-
andum did not prevent the random number
generators on other keys from firing, and thus it
was possible for reinforcers to set up and await
collection on multiple operanda simultaneous-
ly. This contingency is functionally similar to
concurrent variable-interval (VI) schedules,
except that it is response-driven rather than
time-driven. No changeover delays (or other
penalties for switching) were used in the con-
tingency (see Jensen & Neuringer, 2008).

Each of five phases provided a different set
of reinforcer probabilities across the five
operanda as depicted in Table 1. Each subject
experienced a particular phase for five con-
secutive sessions, with the order of the phases
counterbalanced across subjects. Each session
lasted 90 min.

ANALYTIC METHOD

A series of analytic steps was necessary to
calculate the parameter values for the Bary-
centric Matching Model, this being done
separately for each subject. We will illustrate
the analytic procedures with data from Subject

1 in the just-described experiment and provide
all subjects’ data and additional analyses in the
Results section to follow. Data from the third,
fourth, and fifth sessions in each phase were
used for all analyses, providing 15 sessions
from which to calculate the barycentric bias
associated with each operandum. For brevity,
we will refer to the operanda as LK (Left Key),
CK (Center Key), RK (Right Key), LL (Left
Lever), and RL (Right Lever). Again, for
clarity, we will use kW to indicate a bias
parameter without an explicit comparative
scale, such as pairwise (kX/kY) estimates. By
contrast, we will use bkW to indicate barycentric
bias values scaled to the constant T 5 5. As will
be seen, the bkW values are estimated using a
combination of kW values, which are in turn
estimated directly from the data.

Computing Barycentric Bias

We will describe one of two methods for
estimating barycentric biases, the Pairwise
Method, which makes use of Equation 2 to
derive estimates of the parameters in Equation
4. An alternative, the SALT Method, produced
very similar results as did Pairwise, and it is
described in Appendix A. The two methods
are arithmetically similar, and yield similar
results in most, but not all, cases. For an over-
view of which method is best suited for a
particular dataset, see Appendix B.

The Pairwise Method begins with a logarith-
mic transformation of the traditional form of
the Generalized Matching Law (i.e. our Equa-
tion 2) applied to all possible pairs of operanda,
e.g., (kLL/kRL), (kLK/kCK), and so on. This
transformation is shown in Equation 5.

log
BX

BY

� �
~ log

kX

kY

� �
zsO log

RX

RY

� �
ð5Þ

The result was a series of power functions, linear
on log–log coordinates. To calculate the bias
parameter for each unique pair of operanda,
using Subject 1’s data, we estimated the (kX/kY)
values from the intercepts of linear regressions
on these data. Given five operanda, there are 25
(or 52) possible pairings, where operanda X and
Y could be any pairing, such as LK vs. LL or CK
vs. RL. Five of the pairings are identities (such as
X vs. X) whose bias ratios necessarily equal 1.0.
Additionally, ten of the pairings are inversions
(such as X vs. Y as opposed to Y vs. X), such that
calculating the values for (kX/kY) allows us to

Table 1

Probabilities of Reinforcer Setup.

Phase
Left
Key

Center
Key

Right
Key

Left
Lever

Right
Lever

A .03 .03 .03 .03 .03
B .02 .03 .01 .04 .05
C .025 .015 .08 .01 .02
D .0475 .0425 .01 .035 .015
E .0075 .06 .03 .0125 .04
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derive values for (kY/kX) by simply taking the
inverse of the acquired value. Disregarding
identities and inversions, there remain ten
unique ratios in our five-operandum design
(that is to say, (n2 2 n)/2, where n 5 5 in this
case). For Subject 1, the resulting (kX/kY) ratio
values for each pair of operanda are presented
in Table 2.

Each cell represents the value of the kX/kY

fraction (as estimated from Equation 5), with
row placement representing the numerator
used to calculate the ratio and column place-
ment representing the denominator. For exam-
ple, Row 1, Column 2 presents the ratio derived
from comparing BLK/BCK to RLK/RCK and
observing the power function relationship
between the two. We will denote the compari-
son of these using Equation 5 using the form
(LK/CK) hereafter for brevity. Note that five cells
in the table (dark gray with white text) are set to
1.000: these cells are the identities mentioned
above. Note also that 10 cells (light gray) are the
redundant inversions mentioned above: the ratio
calculated from (LK/CK) is mirrored by its
inverse, (CK/LK). In filling out this table, inver-
sions are simply 1/k relative to each appropriate
ratio k. For purposes of barycentric calculations,
all cells should be filled.

The Barycentric Matching Model assumes
that bias ratios are transitive. If, for example,
(kX/kY 5 1.5) and (kY/kZ 5 2.0), then it should
be the case that (kX/kY N kY/kZ 5 kX/kZ 5 3.0)
through cross-multiplication. In practice, the
values in Table 2 are merely estimates (from
linear regressions) of the bias ratios, so some

degree of error can be expected. The efficacy
of the Pairwise Method is largely determined
by how strongly this transitivity assumption is
born out by the actual data. As will be seen, the
data offer strong support for transitivity.

To create a barycentric model, we rely on
two observations. First, each value within a
given column in Table 2 shares (or is scaled
to) a common denominator. Because (LK/CK)
employs the same denominators as (RK/CK),
we can compare LK to RK directly. Put differ-
ently, the ratio [(LK/CK) : (RK/CK)] should
equal the ratio (LK : RK). Second, all values in
a single column are scaled to a different
denominator than the values in every other
column. Thus, we cannot directly compare
(LK/CK) to (LK/RK), because the two are scaled
to different denominators.

In practice, because each column shares a
scaling factor, it is already a barycentric set of
values. However, each column’s scale differs
from that of its neighbors. Furthermore, each
column is an estimate of the same set of
barycentric values. This relationship can be
demonstrated visually. Figure 3 (left), presents
Table 2 as a series of lines: each line represents
a column, and each shaded subsection of that
line represents a single cell. The size of each
subsection indicates the value of that cell.
Note, for example, that because Column 1
generally has larger values than Column 4, the
resulting line is longer. However, the absolute
length of each line is not important: we are
interested only in the ratios between subsec-
tions. Note, for example, that the darkest
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subsection in each line (associated with the
LL) is the largest subsection of each line
regardless of that line’s overall length.

To compare across columns directly, we
must set them to the same scale, i.e. the
denominators of all columns must be the
same. Figure 3 (right) shows what this would
look like by stretching and squashing the five
lines to an equal height. As Figure 3 (right)
demonstrates, these sets of ratios are actually
similar to one another, even if they initially
appear different in Figure 3 (left) due to
differences in scale. The lines can be scaled
in this way because each line in Figure 3 is an
estimate of the same set of barycentric values,
each initially scaled to a different constant T.
Because the scale of a set of barycentric values
is arbitrary, the differences between the
lengths of the lines are not meaningful, and
setting all of the values to a common value for
T reveals their basic similarity.

The values in Table 2 can be brought into a
common scale by taking the geometric mean
of each row. For example, the geometric mean

of first row is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kLK

kLK
O

kLK

kCK
O

kLK

kRK
O

kLK

kLL
O

kLK

kRL

5

r
and

this reduces to
kLKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kLK OkCK OkRK OkLLOkRL
5
p .

With one geometric mean for each row, we now
have five bias parameters (one for each oper-
andum), all scaled to the common denominator

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kLK OkCK OkRK OkLLOkRL

5
p

. In order to conform
to the convention that T 5 5, we need only
take the sum of our five bias estimates and
multiply each parameter by Sum/5, such that the
resulting parameters sum to T 5 5. The result will
be a series of bkW parameters as defined in
Equation 4.

In the case of Subject 1’s data, the Pairwise
Method produced bias estimates for the three
keys and two levers (LK : CK : RK : LL : RL)
which are, once scaled to T 5 5, (0.738 : 0.724 :
0.749 : 1.468 : 1.321) respectively. We can
immediately observe, for example, that while
the Left Key and Center Key have a nearly one-
to-one relative preference (more precisely,
0.738 : 0.724), the Left Key is almost exactly
half as preferred as the Left Lever (0.738 :
1.468).

Assessing Sensitivity

To complete the analysis according to the
Barycentric Matching Model, we calculate the
value of the sensitivity parameter, a measure of
how precisely subjects match ratios of respons-
es to ratios of received reinforcers. Whether

Fig. 3. Pictorial version of Subject 1’s pairwise bias parameters (on the left and in Table 2) and the resulting
barycentric bias when the scales are harmonized (on the right). Each bar represents one column in the tables, and each
subdivision indicates one cell in that column. The height of each subsection matches the value of that cell.
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bias was calculated according to the Pairwise
Method or the SALT Method described in
Appendix A, the calculation for estimating
sensitivity is the same. The prior estimation of
barycentric bias enables us to factor out bias
effects when computing sensitivity, with this
being done separately for each pair of oper-
anda as follows:

log
BX

BY

� �
� log

kX
kY

� �
¼ BRatioX:Y ð6Þ

Instead of using a linear regression to compare
the ratio of responses (BX/BY) with the ratio of
reinforcers (RX/RY) (as in Equation 5), we plot
a modified ratio of responses (BRatioX:Y) that
has the (bkX/bkY) bias ratio factored out. The
resulting function is expected to pass through
the origin, and accordingly, no intercept

parameter is included in Equation 7:

BRatioX :Y ~sO log
RX

RY

� �
ð7Þ

The slope of the resulting function is our
estimate of the s parameter.

As an example, Figure 4 plots BRatios as a
function of reinforcer ratios in which the Left
Key is compared to each of the other operanda
(as indicated by the different symbols). Once
the effects of bias are controlled for in this
fashion, the four functions are similar to one
another—so much so, in fact, that treating the
data from all four comparisons as one dataset
results in a highly representative best-fitting
line (i.e. the function is well-described by a
single sensitivity parameter). This result fur-
ther supports the evidence for a single-

Fig. 4. Relationship between the bias-modified response ratios (BRatios), shown on the y-axis, and the ratios of
obtained reinforcers, shown on the x-axis, for Subject 1, presented on logarithmic (base 2) coordinates. The Left Key is
compared to each of the other operanda, as shown by a separate symbol, and the least-squared line is fitted to the entire
set of points.
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sensitivity model reported by Schneider and
Davison (2005).

Figure 5 applies the same reasoning as
Figure 4, but does so exhaustively for all
possible response ratios (excluding identities).
Thus, for our experiment, this collapses 20
variations of Equation 7 into a single regres-
sion. Figure 5 (left) depicts unmodified com-
parisons of responses to reinforcers. By mod-
ifying each value on the y-axis to a BRatio value
instead (as in Equation 7), we substantially
reduce the noise, resulting in Figure 5 (cen-
ter). As is both visually and rationally obvious,
however, Figure 5 (center) is actually a sym-
metrical function because it uses each re-
sponse ratio twice. For example, the ratio of
(LK : RL) is used as well as the ratio of (RL :
LK). The most conservative way to circumvent
this problem is to utilize points on a single side
of the origin, as presented in Figure 5 (right).
Because the intercept is constrained to the
origin, the slopes in Figure 5 (center) and
Figure 5 (right) are necessarily identical –
removing the mirrored ratios serves mainly to
change the R2 of the regression. We can
estimate that s 5 0.526 for Subject 1 from
the slope of this function.

We now have a complete description of
Subject 1’s behavior according to the Bary-
centric Matching Model, with five individual
bkW values and s 5 0.526. We shall provide
similar analyses for each subject, the goal
being to define the biases for each of the five
operanda and the sensitivities of responses to
reinforcers.

RESULTS AND DISCUSSION

Figure 6 presents the arithmetic means of
all rats’ proportions of responses and received
reinforcers during each session of the exper-
iment, as well as the proportional probabilities
of reinforcer setup. These represent the raw
data used to compute the ratios employed by
our subsequent analyses. Response propor-
tions were calculated by dividing the number
of responses to an operandum by the sum of
responses to all operanda. Reinforcer propor-
tions were calculated similarly. Proportions of
responses and reinforcers are shown separately
for each of the five operanda, one per box.
Obtained reinforcer proportions were highly
correlated with programmed reward propor-
tions (correlation . .99 for all operanda).
Response allocations were also clearly related
to obtained reinforcers, but responses showed
less pronounced shifts than rewards in all
cases; that is, subjects displayed undermatch-
ing. Additionally, signs of bias are suggested by
these data. Relative responses to the Left Lever
were consistently higher than relative reinforc-
ers, for example, while the opposite was true
for the Center Key.

Before we applied our analytic method to
derive a Barycentric Matching Model, we
tested the assumption of bias transitivity.
Figure 7 (left) shows the relationship between
the actual fitted intercept Log(kX/kY) for every
pair of operanda for every subject (using
Equation 5), and the expected intercept, given
an assumption of transitivity, calculated as

Fig. 5. The left graph shows the unmodified relationship between response ratios (on the y-axis) and reinforcer
ratios (on the x-axis) for every pair of operanda. The center graph shows the relationship once response ratios have been
modified to cancel out bias effect (BRatios). The right graph shows the same data as the center, but excludes redundant
ratios, all of which were located to the left of the origin. All graphs are presented on logarithmic coordinates (base 2).
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[Log(kX/kZ) + Log(kZ/kY)]. There were three
possible ways to calculate the expected inter-
cepts, this done by cross-multiplications for
every obtained ratio given by a response pair.
For example, to calculate [Log(kLL/kZ) +
Log(kZ/kCK)], operandum Z could be RK,
LK, or RL. All three cross-multiplications are
included in the figure. The figure shows a

close relationship between obtained and ex-
pected values, with a slope of 0.978 and an R2

of .979, and thereby strongly supports a claim
of transitivity.

An important point to make here is that
transitivity is assumed by the Barycentric
Matching Model but not strictly determined
by it. Figure 7 (center) and Figure 7 (right)

Fig. 7. These graphs indicate how well the assumption of bias transitivity is supported by the data. Plotted are the
log(kX/kY) ratios obtained using the Generalized Matching Law (Equation 5), compared to the ratios predicted by
transitivity (e.g. log[kX/kZ] + log[kZ/kY]). To the extent that the slopes approximate 1.0, the transitivity assumption is
supported. The left graph shows data from all 20 subjects, combined into a single regression. The center graph shows
data from the ‘‘best’’ subject (i.e. the animal that most strongly supports the transitivity assumption), and the right graph
shows the data from the ‘‘worst’’ subject.

Fig. 6. The solid black lines show the average of all 20 subjects’ relative rates of responding (BX/
[BLK+BCK+BRK+BLL+BRL]), with each operandum (namely, the Left Key (LK), Center Key (CK), Right Key (RK), Left
Lever (LL) and Right Lever (RL)) in its own graph. The x-axis of each graph represents the 25 experimental sessions.
Also shown are the analogous rates of obtained reinforcers (gray lines) and relative rates of programmed reinforcers
(dotted lines). Error bars indicate one standard error.
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represent the subjects with the best and worst
transitivity, respectively. As Figure 7 (right)
demonstrates, individual points may deviate
from the fit lines to some extent.

Given that the transitivity assumption was
well met, a Barycentric Matching Model was
constructed for each subject using data from
the third, fourth, and fifth sessions from each
of the five phases (15 sessions total) as
described in the Analytic Method. Figure 8
presents each of the 20 rats’ biases for each of
the five operanda on a base 2 logarithmic
scale2. In general, the levers were highly
preferred and the keys dispreferred: a repeat-
ed-measures analysis of variance found a
significant difference among biases, F(4,20)
5 170.1, p , .0001, and post-hoc paired t-test
comparisons revealed significant differences
between each of the keys on the one hand, and
each of the levers on the other, t(19) . 13.3
and p , .0001 for all lever-to-key comparisons.
Additionally, 18 out of 20 rats displayed a clear
preference for the Left Lever over the Right
Lever, t(19) 5 4.42, p , .0005. For the most
part, subjects treated the three keys as equally
preferred, t(19) , 1.6, ns for all key-to-key
comparisons, although 3 subjects displayed a
slightly lower preference for the center key.

Factoring bias out, we then estimated each
subject’s sensitivity to reinforcer ratios. Fig-
ure 9 shows the distribution of estimated
sensitivity values from the Barycentric Match-
ing Model for each of the 20 subjects, as well as
a kernel density estimation3 of the distribution
of those sensitivities. Overall, sensitivities were
unimodally distributed, with a mean value of
0.4944 and median of 0.4939 and sensitivities

differed across a range of almost 2 to 1. We
also calculated, for each rat’s sensitivity value, a
99% confidence interval. Confidence intervals
ranged from 0.029 to 0.064, with a mean of
0.044. Thus, the different sensitivities observed
across subjects were considerably larger than
could be explained by error alone. From these
results we can conclude that, with respect to
sensitivity to reinforcement, rats exposed to
our five-operandum environment displayed
undermatching and that individual differences
were manifest.

We also tested the Barycentric Matching
Model assumption that a single sensitivity
value (s) would suffice to describe choices
between any two of the operanda, for example,
when LK was compared to RK, LK to LL, etc.
To calculate the barycentric biases, we per-
formed 10 pairwise comparisons, each of
which yielded two parameters, slope and
intercept. For five operanda, there are 10
unique pairs, and thus 10 slopes and 10
intercepts for a total of 20 parameters. The
question is whether utilizing 10 separate slopes
yielded appreciably better descriptions than
our single slope estimate. The Schwarz-Bayes
Information Criterion (Schwarz, 1978), or
‘‘SIC’’, enabled us to compare this 20-param-
eter model to the 6-parameter Barycentric
Matching Model. The SIC provides a relative
score based on (a) the number of parameters
in the model, (b) the residual sum of squares
of the differences between the model and the
observed data, and (c) the number of obser-
vations in the data set. The result is a number
that enables comparison across models: the
lower the score, the better the model. Thus, we
compared the log ratios of responses to those
predicted by the two models for all pairs of
operanda. There were 10 pairs per session,
across 15 sessions, for a total of 150 points.
The SIC value associated with the Barycentric
Matching Model was lower for all 20 subjects
(mean difference 5 48.17, standard error of
differences 5 2.20), and this difference was
statistically significant according to a paired
t-test, t . 21.9, p , .0001. In order to dis-
ambiguate the benefits of barycentric bias
from the benefits of a single slope, we also
compared the Barycentric Matching Model to
a model with 10 sensitivities but with the same
five bias values used in the Barycentric model;
that is, only the sensitivity parameters differed.
The single-sensitivity model was still the better

2 A logarithmic transformation is an appropriate means
of equalizing variance for barycentric biases, but we feel
that logarithms are inappropriate for reporting barycentric
bias given that the equation for the Barycentric Matching
Model does not use logarithms. We have included the
untransformed parameters of the Barycentric Matching
Model for each subject in Appendix C.

3 Kernel density estimation is a nonparametric alternative to
a histogram for presenting the density distribution of a
series of values. In lay terms, a ‘‘kernel’’ (i.e. a small
probability distribution) is placed at each position along
the continuum of values, and those individual distribu-
tions are summed. The size of the kernels is determined by
a ‘‘bandwidth’’ parameter, which is selected to minimize
the asymptotic mean integrated squared error (or AMISE). In
our case, a Gaussian kernel (i.e. a small normal distribu-
tion) with a bandwidth of 0.0364 was used. Kernel density
estimation was popularized by Parzen (1962) and is
discussed at length by Silverman (1986).
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Fig. 9. Distribution of subjects’ sensitivity parameters (s), indicated as small gray circles, according to the Barycentric
Matching Model. The height of the estimated probability density function indicates the relative probability that a subject
will display the sensitivity indicated on the x-axis. The distribution was estimated using kernel density estimation with a
Gaussian kernel and a bandwidth of 0.0364, selected to minimize the asymptotic mean integrated squared error
(Silverman, 1986).

Fig. 8. Barycentric biases for each of the five operanda, logarithmically transformed (base 2). The bias values for each
of the 20 rats are connected with lines. The dark line indicates the means across all subjects. Equal bias (i.e. an absence of
preference) is indicated by the x-axis. Subjects can be said to show a bias against operanda with values below the axis and
a bias for operanda above the axis.
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model (mean difference 5 24.2, t . 11.9, p ,
.0001). These comparisons therefore are con-
sistent with the sufficiency, and possibly the
advantage, of a single-slope model.

How well did the Barycentric Matching
Model describe behavior? Figure 10 shows
how well the parameter values estimated by
the Barycentric Model describe the actual
choice proportions generated by each of the
rats. The figure shows the relationship be-
tween actual response proportions and those
expected, based on the model, from all
subjects on all operanda, in the third through
fifth sessions of all phases (for a total of
1500 points). When we compared each indi-
vidual subject’s actual behavior to predictions

from the model, the median correlation was
.9320, with the distribution of correlations
skewed toward the higher values: 4 subjects’
correlations were below a value of .9 and 7
subjects’ correlations were above .94. In
general, therefore, the Barycentric Matching
Model provided a relatively accurate descrip-
tion of performances.

Use of a correlation on the data in Figure 10
is problematic, however, because the points
are not normally distributed (nor are they on
logarithmic coordinates). To supplement our
comparison, we also performed Spearman’s
rank correlations to provide a nonparametric
comparison of model predictions to subject
performance. We performed a separate anal-

Fig. 10. Response proportions generated by each of the rats on all five operanda as a function of predicted response
proportions. Predictions were based on each animal’s Barycentric Matching Model. The predictive model was based on
data from the terminal three sessions in each of the five phases. Across all operanda, actual and expected data were
correlated with a coefficient of .9225.
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ysis for each subject, with the five relative
frequencies of responses in all 15 sessions (for
a total of 75 points). In all cases, the relation-
ship between actual and expected response
proportions were highly significant, with Spear-
man’s r values ranging from .45 to .8, t(73) .
4.0 and p , .00005 for all subjects. The response
proportions were not strictly independent of
one another (as more responses to one oper-
andum necessarily means fewer to another), so
we also ran Spearman’s rank correlations
separately for each animal on each operandum,
finding statistical significance in nearly every
instance, t(13) . 0.48 and p , .04 for 95 out of
the 100 comparisons. Thus, we conclude that
the Barycentric Matching Model provided a
good description of behavior.

GENERAL DISCUSSION

Most studies of choice under concurrent
schedules of reinforcement have focused on
situations in which two alternatives are available
(e.g., two keys, levers, or buttons, depending
upon species) and in which inherent differenc-
es between the two operanda are minimized
(e.g., differences in force necessary to operate
them, distance from the reinforcer, and so
forth). A commonly reported result of these
experiments is that the ratios of emitted
responses and collected reinforcers exhibit
power-function relationships to one another.
In the world outside of the lab, however,
humans and other animals generally have more
than two choice options at any given time.
Foraging animals often have a wide variety of
different areas to search. People can choose
among many TV channels, many items on a
menu, or many tasks around the house.
Furthermore, those options are generally not
subjectively equivalent. Differences in prefer-
ence have a powerful effect outside the lab,
whether they stem from the properties of the
choice (e.g., relative quality, ease, or salience) or
of the organism (e.g., handedness).

In the few reports of choice under concur-
rent schedules where more than two options
(or operanda) are available, similar power
function relationships have been reported.
However, researchers have grappled with the
challenge of how to analyze and describe data
collected when more than two response
alternatives are simultaneously available, a
problem that has been especially acute with

respect to bias. With this in mind, we studied
how 20 rats allocated their choices across five
operanda when those options were designed
to engender different levels of inherent bias
(namely, two levers in close proximity to the
reinforcer dispenser and three pigeon keys
25 cm from the dispenser). Our goal was to
provide a succinct model that could describe
choices in the presence of many options (two
or more), even when the options potentially
differed in terms of biases. We revised the
Generalized Matching Law proposed by Baum
(1974) based on the observation that the five
operanda were related to one another as a
multidimensional ratio. This barycentric prop-
erty permitted us to compute one ‘‘barycentric
bias’’ parameter for each operandum.

The 20 rats displayed highly consistent biases.
All subjects markedly preferred the levers
relative to the keys, and most subjects (18 of
20) favored the left lever over the right lever.
The preference for levers over keys was expect-
ed given the close proximity of the levers to the
reinforcer tray and to our informal observations
that training lever presses was more rapid than
training key presses. The preference of left
relative to right lever is less easily explained.
Recent informal observations in our lab sug-
gested that the proximity of the water bottle to
the Left Lever may have been responsible.
Given the lack of a corresponding Right Key
bias, we speculate that the Left Lever’s position
between the reinforcer delivery tray and the
water may have been the cause.

Once these biases were derived from the
barycentric analysis, sensitivity (i.e., the expo-
nent of the power function) proved readily
calculable. Consistent with other results in the
literature, we found that a single sensitivity was
sufficient to describe each animal’s responses
across all operanda. The resulting model,
which consists of one bias parameter per
operandum and one sensitivity parameter, is
referred to as the Barycentric Matching Model.
We applied the Schwarz-Bayes Information
Criterion to compare the Barycentric Match-
ing Model (with a single sensitivity parameter
and five bias parameters) to the alternative
where each pair of operanda, e.g., Left Lever
and Right Key, had associated sensitivity and
bias values, producing a twenty-parameter
model. The Barycentric Matching Model was
more parsimonious and was evaluated by the
SIC statistic as the ‘‘better’’ model.

BARYCENTRIC EXTENSION OF GENERALIZED MATCHING 153



In contrast to the across-subject consistency
of the bias results, there was considerable
individual difference in the sensitivity values,
yielding an approximately normally distributed
spread, with the s parameter ranging from
0.368 to 0.620. Given that the sensitivity
parameter’s 99% confidence interval was no
larger than 0.064 for any subject (and often
much smaller), we conclude that the differenc-
es among subjects are too large to be dismissed
as the result of experimental noise or error.
The orderly distribution of s values is of interest
because differences in sensitivity to reinforce-
ment may be related to developmental, experi-
ential, and genetic contributions to choice, as
well as the effects of physiological and psycho-
pharmacological manipulations. Such differ-
ences may also be correlated with other possible
behavioral variables, such as ability to respond
to delayed reinforcers or to engage in self-
controlled choice responses. We do not at
present know which aspects of our procedure
(e.g., probabilistic reinforcers, high reinforce-
ment frequency, more-than-two operanda, bi-
ased options) contributed to the distribution of
sensitivity values, but the question warrants
further study. A relatively complex environ-
ment, such as the one in the present studies,
may be more likely than a simpler environment
to distinguish sensitivity values.

The programming of reinforcers probabilis-
tically, based on responses instead of passage of
time, as under the more common VI schedules,
deserves special comment. As in the concurrent
VI VI case, where passage of time results in the
possibility of reinforcers setting up on any of the
available operanda, responses in our experi-
ment served the same function, with a response
to any of the five operanda probabilistically
setting up a reinforcer on any of them. This
procedure has only rarely been used in the study
of choice (Jensen & Neuringer, 2008; Lau &
Glimcher, 2005), but it may have advantages. In
the concurrent VI VI case, when programmed
reinforcers are very frequent, control over
obtained reinforcement frequencies is lost,
since almost any response results in reinforce-
ment. Under our procedure, the different
reinforcer probabilities were maintained even
though these probabilities yielded much more
frequent reinforcers than is commonly found in
concurrent schedules. On average, every sixth
response produced reinforcement, and this
richness of feedback may have contributed to

the rapid acquisition displayed by subjects in
Figure 6. This rapidity, in turn, allowed us to
reliably estimate the parameters of matching
behavior across five operanda (both in terms of
operandum preferences and in terms of sensi-
tivity to reinforcement contingencies) with only
5 sessions per phase for a total of 25 sessions in
the entire experiment. In summary, concurrent
probability schedules might enable rapid spec-
ification of choice performance. The employ-
ment of five (or more) separate choice options
may also contribute because of the number of
different reinforcement frequencies that can
simulaneously be evaluated.

SALT Estimates of Barycentric Bias

Appendix A provides an alternative to the
Pairwise method that was used to estimate
barycentric bias values. This alternative is
based on Natapoff’s (1970) Symmetric Approxi-
mation by Leading Term, or SALT. The SALT
equation (sometimes called the Natapoff equa-
tion) has been used in a number of studies,
most notably Schneider and Davison (2005).
Only minimal differences resulted from using
the Pairwise Method described above and the
alternative SALT Method for calculating bary-
centric bias in this study’s data, but there exist
situations in which one method would be
preferred. Appendix B outlines the criteria for
choosing between the two methods.

Applying the Barycentric Matching Model to Other
Experimental Data

Schneider and Davison (2005) used match-
ing models to analyze response sequences on
two operanda concatenated in a way to create
four choice options. Pigeons pecked two keys
(Left and Right), and the ‘‘response unit’’ for
the contingency was a two-response sequence,
resulting in four possible sequences: LL, LR,
RL, and RR. Schneider and Davison reported
two important results: (1) Responses requiring
stays (namely, LL and RR) were preferred over
those requiring changeovers (LR and RL), and
(2) a single sensitivity parameter was sufficient
to describe behavior, despite there being six
distinct possible ‘‘operant ratios’’ (such as LL :
LR, RL : RR, etc.).

To demonstrate that a single sensitivity was
adequate, Schneider and Davison (2005)
utilized a bootstrapped optimization proce-
dure to fit multiple variations of Equation 2
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simultaneously rather than employing an
algebraic solution such as the one proposed
in the present article. Furthermore, bias ratios
were described in general terms (e.g. subjects
‘‘showed some biases favoring sequences with
no changeovers,’’ p. 55) but the magnitudes
of the biases were not discussed.

We applied the Barycentric Matching Model
and found nearly identical parameter values,
providing strong support for the authors’
claim of a single sensitivity. Furthermore, our
analysis of the data in Schneider and Davison’s
(2005) Appendix A provides additional quan-
titative evidence concerning the nature of the
repetition bias.

As Table 3 demonstrates, the sensitivities
computed algebraically with the Barycentric
Model for each subject are (given rounding)
identical to the sensitivities computed by the
optimization procedure utilized by Schneider
and Davison (2005). Table 3 also demon-
strates that while changeover responses (LR
and RL) were generally less preferred than
repetition responses (LL and RR), as reported
by Schneider and Davison, there was consid-
erable variation across subjects as to the
degree of bias. In particular, Subject 113
showed a clear preference for RR but not for
LL, while Subject 115 treated LL and LR as
approximately equal. Our analysis therefore
enriches the general finding of a repetition
bias, and provides the range of biases demon-
strated by individual subjects and for different
response units.

We applied the Barycentric Matching Model
to other published data sets as well. For
example, in Davison and McCarthy (1994),
pigeons responded to a three-schedule concur-
rent contingency operated via a Findley switch
procedure. In the high discriminability (HD)
condition in which color cues were provided,

the pigeons readily distinguished between
schedules, but in the low discriminability (LD)
condition two of the cues were very similar. We
found that sensitivities were much higher in the
HD condition (mean 5 0.851, SE 5 0.085) than
in the LD condition (mean 5 0.532, SE 5
0.088), without any substantial shifts in bias
values. These results generally agree with those
reported by Davison and McCarthy, who found
lower pair-wise sensitivities in the LD condition
than in the HD condition.

Future Directions

The Barycentric Matching Model is a flexi-
ble tool that extends the experimental scope
of matching research. For example, it can be
used to explore the relationship between
reinforcer frequency and reinforcer magni-
tude, a relationship that has been studied by
extending the Generalized Matching Law (e.g.
Lau & Glimcher, 2005). In such an analysis,
the model might take the following form:

bkAO RAð ÞsR O MAð ÞsM

BA
~

bkBO RBð ÞsR O MBð ÞsM

BB
~:::

~
bkN O RNð ÞsR O MNð ÞsM

BN

ð8Þ

Here, while RX indicates the number of
reinforcers, MX indicates the quantity deliv-
ered per reinforcing event, and instead of a
single sensitivity s, RX and MX each have
individual sensitivities (here indicated as sR

and sM, respectively). Similar extensions of the
formula could be made for other variables,
such as reinforcer delay or discriminability. If
any of these variables result in a bias, the
degree of bias can be quantified.

Schneider and Davison’s (2005) study sug-
gests another possible direction: the study of
response sequences. Although Schneider and

Table 3

Sensitivity and Barycentric Bias in Schneider & Davison (2005).

Subject

Reported Results Recalculated Results

Sensitivity Sensitivity bkLL bkLR bkRL bkRR

111 0.82 0.822 1.320 0.629 0.699 1.352
112 0.53 0.526 1.621 0.661 0.517 1.200
113 0.84 0.842 0.972 0.983 0.828 1.217
114 0.65 0.652 1.179 0.750 0.788 1.283
115 0.73 0.728 1.039 1.045 0.600 1.315
116 0.65 0.650 1.085 0.818 0.823 1.274
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Davison looked at response dyads, they did so
treating each pair as a discrete trial. There is
no reason, however, why such an analysis could
not be applied to traditional concurrent re-
sponding using a moving window. For example,
the response sequence BAAB could be decom-
posed into single responses (B, A, A, B), dyads
(BA, AA, AB), and triads (BAA, AAB). The chief
obstacle to such an analysis would be the volume
of data necessary. The resulting analysis could
provide a bridge between traditional matching
analyses (generally understood to be ‘‘molar’’
in nature) and sequential (or ‘‘molecular’’)
analyses of behavior.

Another potential application for the Bary-
centric Matching Model is to attempt to model
real-world data. Because of its capacity for
comparing many options simultaneously, the
model might be modified to analyze (for
example) the relationship between sale price
and consumer consumption in a retail context
where many different items are available; or
patterns of Internet use (such as frequency of
visit vs. frequency of update across many sites).
While experimental confounds make working
with such real-world data difficult, it is never-
theless a direction for behavior analysis with
considerable potential gains, both in terms of
raising new questions and in terms of gener-
ating new applications of existing theory.
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APPENDIX A: THE SALT METHOD FOR
COMPUTING BARYCENTRIC BIAS

The ‘‘SALT Method’’ for deriving the Bary-
centric Matching Model relies on a generaliza-
tion of Equation 2 originally proposed by
Natapoff (1970) to analyze matching on more
than two operanda. SALT stands for ‘‘Symmet-
ric Approximation by Leading Term,’’ and has
been discussed in a number of publications
(Aparicio & Cabrera, 2001; Schneider & Davi-
son, 2005).

Instead of estimating bias from a series of
pairwise comparisons, as is done in the

Pairwise Method, SALT compares an operan-
dum to an amalgamation of all available
operanda:

BAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BAOBBO:::OBN

N
p ~k

RAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RAORBO:::ORN

N
p

� �s

ðA1Þ

In Equation A1, responses (B) and reinforcers
(R) from N operanda are included. The
denominator of each fraction is simply the
geometric mean of the relevant data from all
operanda. Thus, the number of responses on
operandum A, shown by BA, is relative to the
geometric mean of responses on all of the
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operanda; and the same holds for the rein-
forcers. As in Equation 1, the equation also
includes a bias parameter (k) and a sensitivity
parameter (s).

In order to estimate the bias parameters
associated with each operandum, the k param-
eter must be made more explicit (much as
we did with Equation 2). Schneider & Davison
(2005) proposed the following way to do
this:

BAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BAOBBO:::OBN

N
p ~

kAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAOkBO:::OkN

N
p

� �
O

RAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RAORBO:::ORN

N
p

� �s
ðA2Þ

In this form, it becomes clear that SALT’s k
compares the bias parameter for one oper-
andum to a composite of all bias parameters.

The SALT method for estimating bary-
centric bias requires a logarithmic transforma-
tion of Equation A2, analogous to that in
Equation 5:

log
BAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BAO:::OBN
N
p

� �
~ log

kAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAO:::OkN

N
p

� �

zsO log
RAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RAO:::ORN
N
p

� �ðA3Þ

Equation A3 puts the data in a form that permits
the parameters to be estimated with a linear
regression. Each intercept is an estimate of the
bias parameter for that operandum. Thus, by
repeating the regression with each operandum
in the numerator, we calculate the five inter-
cepts in order to estimate those five biases.

Note that the intercept parameters derived
using this method appear to estimate the same
values as the geometric means presented in
the Pairwise Method. For example, for the Left
Key, the intercept in Equation 8 allows us to

estimate
kLKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kLK OkCK OkRK OkLLOkRL
5
p . As a conse-

quence, the final step of the SALT Method is
the same as that of the Pairwise Method:
compute the sum of the five intercepts and
multiply each value by Sum/5. The result will be
five bkW parameters, scaled to T 5 5.

In the case of Subject 1, the resulting
barycentric bias parameters for (LK : CK : RK
: LL : RL) were (0.736 : 0.725 : 0.747 : 1.461 :
1.331) respectively, results very close to those
derived from the Pairwise Method.

APPENDIX B: THE PAIRWISE METHOD
AND THE SALT METHOD COMPARED

There is an important distinction between
assumptions made by a model (such as the
Generalized Matching Law) and assumptions
made by a method for estimating model
parameters (such as a linear regression).
Arithmetically, the Pairwise and SALT Meth-
ods are identical: Not only does SALT (exem-
plified by Equation A2) reduce to the tradi-
tional Generalized Matching Law (exemplified
by Equation 2), but it is more generally the
case that both Equations 2 and A2 can be
achieved through transformation of Equation
4. The difference between Pairwise and SALT
methods is not, then, theoretical. Instead, the
difference derives from the process of estimat-
ing model parameters using linear regressions
on logarithmic coordinates. In other words,
which method to choose is a practical ques-
tion.

The key assumption in using a linear
regression is that the spread of the values for
the independent variable will be large enough
to overcome the error (or ‘‘noise’’) in the
dependent variable. If the experimental data
are such that the regression lines for either
method have a low R2 value, then the
parameter estimates derived from those re-
gressions will have a high likelihood of
differing from the ‘‘true’’ values, assuming
that many replications can arrive at those
values.

The conditions under which the SALT
Method is less effective than Pairwise are
relatively straightforward. Imagine an experi-
ment in which, in each session across all
phases, subjects received very close to 20% of
their reinforcers from the Left Lever. When
Equation A3 is used to estimate the Left-Lever
bias, there will be little to no spread along the
x-axis of the regression, and the intercept will
instead be determined chiefly by the spread of
error along the y-axis. Thus, each operandum
must receive a variety of different proportions
of reinforcement over the course of the study
for the SALT Method to be effective.

The Pairwise Method, by contrast, depends
not on variations in a single operandum’s
proportion of reinforcement, but rather on
variations in the ratios of reinforcers across
pairs of operanda. Imagine an experiment in
which Phase 1 delivered 40% of the reinforcers

BARYCENTRIC EXTENSION OF GENERALIZED MATCHING 157



to the Left Lever and 20% to the Right Lever,
while Phase 2 saw 20% and 10% respectively.
The ratio of (LL : RL) would be (2 : 1) in both
cases, and the x-axis of that regression will
show little spread. Thus, the proportion of
reinforcement each operandum received must
vary relative to other operanda for the Pairwise
Method to be effective.

Because our experimental design had large
variations in both per-operandum reinforce-
ment frequencies and in pairwise reinforce-
ment ratios, both methods for calculating
barycentric bias were effectively equivalent.
However, we can describe other circumstances
where one method or the other is less
effective. Below, we present three hypothetical
scenarios of reinforcement across five re-
sponse alternatives: in two of them, one of
our methods is expected to face difficulties,
while in the third, both methods will be
effective. All scenarios involve an experiment
with five operanda and two different phases,
and all involve the same proportions of
reinforcement.

In the first scenarios, the two phases involve
the following proportions of reinforcement:
Phase 1 5 (0.08, 0.11, 0.17, 0.26, 0.38), Phase 2
5 (0.08, 0.38, 0.26, 0.17, 0.11). Here, the same
five proportions are arranged in two different
ways. The SALT Method will be vulnerable to
error in this case because Operandum 1 has
received a proportion of 0.08 in both cases.
However, the Pairwise method should remain
effective in this case because all the pairwise
ratios are distinct. For example, (A : B) is (0.08
: 0.11) in Phase 1 and is (0.08 : 0.38) in Phase
2, a difference of about a factor of 3.

In the second scenario, the two phases are as
follows: Phase 1 5 (0.08, 0.11, 0.17, 0.26, and
0.38), Phase 2 5 (0.17, 0.26, 0.38, 0.08, 0.11).
Here, SALT will be quite effective, because
every operandum differs between the two
phases. However, the Pairwise Method will

face difficulties because many of the paired
ratios do not differ. For example, (B : C) is
(0.11 : 0.17) in Phase 1, which is about a ratio
of (1 : 1.5). In Phase 2, (B : C) is (0.26 : 0.38),
which is also about a ratio of (1 : 1.5). Because
of this, a regression using (B : C) will have little
variance, and be prone to considerable error.

In the third scenario, Phase 1 5 (0.08, 0.11,
0.17, 0.26, 0.38) and Phase 2 5 (0.38, 0.17,
0.11, 0.26, 0.08). In this case, both the per-
operandum proportions and the pairwise
ratios differ between the two phases, so both
the SALT and the Pairwise methods will be
able to effectively estimate the Barycentric
Matching Model.

The shortcomings exemplified by the above
scenarios can largely be avoided through
proper experimental design. A fully counter-
balanced design (in which each operandum is
at some point exposed to each proportion of
reinforcement) will generally render both
methods effective in generating parameter
estimates. Even if a fully counterbalanced
method is not implemented, a design that
carefully avoids invariance of individual oper-
anda (as in our first scenario) and pairwise
invariance (as in our second scenario) allows
both methods to be applied effectively. Fur-
ther, because extant data may not be properly
counterbalanced, we encourage the mindful
selection of an analytic method. The ability to
produce reasonable estimates from non-ideal
data sets is vital to broadening the relevance
and applicability of the Barycentric Matching
Model, and matching analyses generally.

Thus, we wish to caution against the
assumption that the two methods of analysis
are interchangeable. We also want to empha-
size that the distinctions between methods do
not constitute a distinction between models.
In all cases, our two analytic methods are
estimating the same relationships, embodied
by Equation 4.
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APPENDIX C
Barycentric Matching Model Parameters Per Subject.

Subject bkLeftKey bkCenterKey bkRightKey bkLeftLever bkRightLever s

1 0.7380 0.72441 0.7490 1.4678 1.3207 0.5256
2 0.6919 0.5924 0.6820 1.6166 1.4171 0.4536
3 0.6913 0.9115 0.6428 1.5383 1.2162 0.4608
4 0.6245 0.6346 0.6565 1.8382 1.2461 0.4798
5 0.6940 0.8287 0.6626 1.8335 0.9813 0.5402
6 0.8901 0.8280 0.8315 1.3057 1.1447 0.4304
7 0.7109 0.6864 0.7185 1.6555 1.2287 0.4900
8 0.8342 0.7683 0.9262 1.3122 1.1591 0.5290
9 0.6981 0.6875 0.6262 1.6635 1.3246 0.3886

10 0.6917 0.76449 0.8618 1.5106 1.1714 0.4465
11 0.8108 0.8132 0.8441 1.2965 1.2354 0.4971
12 0.8571 0.7959 0.8522 1.3017 1.1932 0.5195
13 0.5836 0.7136 0.6841 1.6911 1.3275 0.6198
14 0.7098 0.7441 0.7227 1.4944 1.3289 0.5210
15 0.7122 0.7292 0.7231 1.4319 1.4036 0.5595
16 0.8886 0.5712 0.7426 1.6133 1.1843 0.5848
17 0.7283 0.7301 0.7907 1.2941 1.4568 0.4809
18 0.8276 0.7660 0.6557 1.6041 1.1466 0.3676
19 0.7437 0.6982 0.8122 1.2239 1.5219 0.4981
20 0.7511 0.6126 0.7065 1.6629 1.2669 0.4629
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